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We report and analyze complex patterns observed in a combination of two standard pattern forming experi-
ments. These exotic states are composed of two distinct spatial scales, each displaying a different temporal
dependence. The system is a fluid layer experiencing forcing from both a vertical temperature difference and
vertical time-periodic oscillations. Depending on the parameters these forcing mechanisms produce fluid mo-
tion with either a harmonic or a subharmonic temporal response. Over a parameter range where these mecha-
nisms have comparable influence the spatial scales associated with both responses are found to coexist,
resulting in complex, yet highly ordered patterns. Phase diagrams of this region are reported and criteria to
define the patterns as quasiperiodic crystals or superlattices are presented. These complex patterns are found to
satisfy four-mode �resonant tetrad� conditions. The qualitative difference between the present formation
mechanism and the resonant triads ubiquitously used to explain complex-ordered patterns in other nonequilib-
rium systems is discussed. The only exception to quantitative agreement between our analysis based on
Boussinesq equations and laboratory investigations is found to be the result of breaking spatial symmetry in a
small parameter region near onset.
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I. INTRODUCTION

Convective systems have played an essential role in de-
veloping understanding of nonlinear dynamics and spatially
extended systems. To study system states that form as well as
transitions between them one typically begins with a uniform
state and increases the stress on the system. As this stress
increases past some critical value, spatial or temporal varia-
tions form that are commonly described as patterns �1�.
These studies often focus on the initial �primary� regular
variations that possess a single characteristic wave number.
Onset values of both the stress parameter and critical wave
number �qc� are found by linear stability analysis of the uni-
form state. The planforms of stable patterns are then dictated
by nonlinear mode interactions. Observed planforms are usu-
ally basic near primary onset, stripes, squares, or hexagons
�2,3� and do not include more than two basic wave vectors.
Further increasing system stress produces more complex pat-
terns �4�. Secondary bifurcations that break spatial or tempo-
ral symmetries are often responsible for this additional com-
plexity. Symmetry breaking can produce multimode patterns,
aperiodic states, and turbulence �5,6�. However, even if the
original stationary patterns remain stable, the presence of
competing attractors may lead to persistent dynamics as a
result of long wavelength distortions, emergence of multiple
domains, dislocations, as well as other pattern defects. Mod-
ern examples include spiral-defect chaos �2� and defect tur-
bulence �7�.

Recently, pattern formation studies have extended the
single wave-number focus to include what Pismen �8� has
termed complex-ordered states. While these patterns are spa-
tially complicated, in the spectral domain they are described
by a relatively small number of Fourier modes. If the spectral
peaks are incommensurate in wave number the state is a

quasiperiodic crystal pattern �9� �see Sec. VI�. In the special
case where the peaks are commensurate the resulting peri-
odic pattern is a superlattice. Typically these states are com-
posed of a regular arrangement of short scale subunits on a
larger scale backbone. Quasiperiodic crystals, sometimes re-
ferred to as quasipatterns, and superlattices have been re-
ported in various hydrodynamic �10–15� and optical systems
�16,17�. In the hydrodynamic cases the distinct wave num-
bers of relevant spectral modes naturally arise in the vicinity
of a bicritical point where distinct bifurcation routes of the
unstructured ground state coexist. Additionally, �near�-
resonant interactions of the basic pattern forming modes with
certain weakly damped modes of different wave number may
come into play �18�. The optical cases are conceptually dif-
ferent. In these cases light waves of different wavelengths
are selectively generated and superimposed by a feedback
mechanism.

The focus of this paper is a separate pattern forming sys-
tem that also possesses a bicritical point; thermal convection
in the presence of vertical oscillations. In particular, we are
interested in a fluid layer of depth d and relatively large
lateral extent, driven by both an imposed vertical tempera-
ture difference and vertical oscillations �Fig. 1�. If only the
thermal driving is present the system reduces to a standard
Rayleigh-Bénard experiment, which is commonly used in
convection and pattern formation studies �1,2�. In this case
fluid motion begins at a well-defined temperature difference
��T=�Tc� and becomes more complex with increasing �T.
Only two nondimensional parameters are required for
the theoretical description, the Rayleigh number R
=�gd3�T /�� and the Prandtl number Pr=� /�. In the defi-
nitions of Pr and R are the kinematic viscosity �, thermal
diffusivity �, thermal expansivity �, and the earth’s gravita-
tional acceleration g. The characteristic length scale is set by
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d, with the characteristic time scale being the vertical diffu-
sion time tv=d2 /�. Due to the working fluid in this study
being a compressed gas Pr�1. Precisely Pr=0.930, unless
otherwise stated.

If only the vertical oscillations are imposed the system
does not display patterns. Unlike a Faraday experiment that
studies surface wave formation �10–15�, the present system
does not have a free surface. Thereby, in the absence of the
thermal driving the uniform state is stable. Inclusion of the
parametric forcing produces an effective modulated gravity
and requires two additional dimensionless �modulation� pa-
rameters, angular frequency �= tv�� and displacement am-
plitude � Fr=�� /gtv

2 = ��2 /d4g���. In the laboratory the dis-
placement amplitude �� and the angular frequency �� are
measured.

Linear stability analyses �19–23� of the Boussinesq equa-
tions for shaken convection indicate that flows with two dis-
tinct temporal and spatial scales can be stimulated. Our de-
scription of vertically oscillated convection is based on
standard Boussinesq equations with an appropriate modu-
lated gravity term and produces excellent agreement with the
experiments. In both cases of �i� heating from below �R�0,
Figs. 2�a� and 2�b�� and �ii� heating from above �R	0, Figs.
2�c� and 2�d��, these studies predict primary onset occurs to
fluid flows possessing time dependence proportional to the
modulation frequency. Onset to flows synchronous to the
drive period �
=2� /�� or harmonic occurs at relatively
smaller values of the modulation parameters, while at larger
values of � Fr and � primary onset occurs to flows periodic
at 2
 or subharmonic. In case �i� harmonic flows are more
stable than in the absence of modulation, i.e., the critical
Rayleigh number for harmonic primary onset Rc

H is expected
to be larger than the critical Rayleigh number in the absence
of modulation �Rc

0=1708�. Subharmonic flows may occur
at a Rayleigh number either larger �Rc

S�Rc
0� or smaller

�Rc
S	Rc

0� than unmodulated convection. In this case the
wave number at harmonic onset is less than at subharmonic
onset �qc

H	qc
S�. In case �ii� primary onset again may occur to

either harmonic or subharmonic flows. In contrast to case �i�,
subharmonic wave numbers at onset are smaller than the
harmonic ones �qc

S	qc
H�. In the � Fr-R parameter space har-

monic and subharmonic threshold curves cross at a bicritical
point �� Fr=�2cFr, R=R2c�.

Describing the current system by analogy to a pendulum
with an oscillating base provides a qualitative understanding
of the onset behavior. Mathematically this description is in
terms of a Mathieu equation �19�. Case �i� corresponds to an
inverted pendulum while case �ii� can be mapped onto the

hanging pendulum. Stabilization of an inverted pendulum by
oscillating its base is an example of modulation induced sta-
bility. In case �ii�, �T=T2−T1	0, the resulting Rayleigh
number R is negative and no convection occurs in the ab-
sence of modulation. However, for sufficiently large ��T�
damped internal waves exist, which are relatively long lived,
due to the decay time being considerably larger than the
temporal period. In fact, due to a resonant coupling of these
modes to the externally modulated gravity, a convection in-
stability can be excited as well. The primary onset properties
of this case, which we will briefly address in the paper, are
shown in Figs. 2�c� and 2�d�.

Symmetry properties play an important role in the selec-
tion of the stable pattern near onset. The properties of the
emerging state are captured by a Landau-type equation for
the pattern amplitude A. In the Boussinesq approximation of
Rayleigh-Bénard convection, temperature variations of the
material parameters, with the exception of the buoyancy
term, are neglected. Thereby, the system is invariant against
spatial reflections about the fluid layer midplane. This spatial
symmetry requires the amplitude equations be invariant un-
der the transformation A→−A. As a result even order terms
are excluded from the equations. Corresponding stripes are
usually observed at threshold, although in a few examples
squares have been observed �24–27�. If Boussinesq symme-
try is violated, quadratic terms allow two modes to resonate
with a third, forming a resonant triad, and hexagons will
form close to threshold �3�. In contrast to the described spa-
tial symmetry, parametrically driven systems typically pos-

FIG. 1. Fluid motion in the layer is driven both by the imposed
temperature difference �T=T2−T1 and vertical oscillations of the
form �� cos ��t. In addition to the standard Rayleigh-Bénard pa-
rameters of Pr and R this system is characterized by two nondimen-
sional modulation parameters � Fr and � �see text�.

FIG. 2. Results from our linear stability analysis of vertically
oscillated Rayleigh-Bénard convection for the cases of heating from
below ��a� and �b�� and from above ��c� and �d��. Solid lines are the
harmonic marginal stability boundaries �Rc

H ,qc
H�, while dashed

curves are the corresponding subharmonic boundaries �Rc
S ,qc

S� for
two frequencies, �=98 and 50. Arrows in �a� and �c� point to the
bicritical points where harmonic and subharmonic threshold curves
intersect at �2cFr, R2c. Corresponding critical wave numbers are
shown in �b� and �d�.

ROGERS et al. PHYSICAL REVIEW E 71, 066214 �2005�

066214-2



sess a symmetry under discrete time translation by a drive
period 
. If the response of the system is subharmonic, the
amplitude equations must be invariant under the transforma-
tion A→−A, which again precludes quadratic terms and
three-mode interactions. On the other hand, in the case of
harmonic response or if the time translation invariance is
broken resonant triads are again allowed and can generate a
whole variety of complex-ordered patterns, provided they are
not excluded by spatial symmetries.

In contrast to the majority of complex-ordered patterns
observed previously in parametrically driven systems we find
quasiperiodic crystalline and superlattice states near primary
onset in the presence of inversion symmetry �23�. A com-
monly observed pattern in the current system is a quasiperi-
odic crystal composed of starlike structures on a square
background. These complex-ordered states are found over a
relatively wide parameter range in both experiments and
simulations that are in quantitative agreement over the ma-
jority of the studied parameter space. The one exception oc-
curs in the vicinity of bicriticality where numerics with
Boussinesq symmetry indicate such complex-ordered pat-
terns may emerge directly from conduction at the bicritical
point. However, these are not observed in the laboratory. The
discrepancy is found to be due to non-Boussinesq effects in
the experiments close to bicriticality.

This paper is divided into sections based on topic. In Sec.
II A our experimental apparatus is presented, while our nu-
merical methods are described in Sec. II B. The transitions to
complex-ordered patterns from conduction �Sec. III A� as
well as from states of either pure harmonic �Sec. III B� or
pure subharmonic convection �Sec. III C� for a representative
� are then presented. In Sec. IV four-mode resonance
mechanisms �resonant tetrads� that produce the observed
patterns are presented and discussed. In Sec. V A complex-
ordered patterns found in both experiments and simulations
at other � values are examined. All of our experiments and
the majority of numerics consider the case of heating from
below �R�0�. These results are augmented in Sec. V B with
analysis findings for heating from above. The mathematical
characterization of the complex-ordered patterns we ob-
served is presented in Sec. VI. Finally, conclusions and
complementary discussions are presented in Sec. VII.

II. BACKGROUND

A. Experimental apparatus

Our convection apparatus is based on well-tested designs
for standard Rayleigh-Bénard convection using compressed
gases �28,29�. The convection cell �Fig. 3� is inside a hollow
cylinder with a mirror for the bottom surface and a sapphire
crystal for the upper surface. The mirror is a gold coated
cylindrical aluminum block 5.08 cm in diameter and 0.60 cm
thick. The sapphire crystal is also cylindrical with a 5.0 cm
diameter and height of 2.54 cm. Between the surfaces the
lateral boundary �side wall� of the convection cell is a verti-
cal stack of filter paper with an inner diameter of 3.8 cm and
an outer diameter of 5.08 cm; the thickness of the filter paper
stack determines the gas layer thickness d which is typically

in the range of 0.05 to 0.07 cm. The corresponding vertical
diffusion time is tv=d2 /��1.5 s.

The convection cell is confined in an aluminum pressure
containment vessel that is 6.75 cm high with a 6.93 cm inner
diameter and an 8.95 cm outer diameter. The sapphire crystal
is held tightly against the top of the vessel by the pressure of
the compressed CO2 gas contained inside. The aluminum
mirror is aligned parallel to the bottom of the sapphire crys-
tal by a kinematic mount consisting of three fine-adjustment
screws arranged in a centered equilateral triangle. A fourth
adjustment screw is attached to the center of the mirror bot-
tom, allowing the aluminum mirror to be tightened against
the kinematic mount to ensure that the mirror does not move
once the cell surfaces have been adjusted parallel to one
another. Cell surfaces are aligned by interferometry using a
He-Ne laser as a light source �Fig. 3�. A set of fringes is
produced by the light reflected from the lower sapphire crys-
tal surface and the upper �reflective� surface of the mirror
allowing leveling to within a few optical wavelengths. Inter-
ferometry measurements demonstrate that the bounding sur-
faces remain level when oscillations are imposed. Systemati-
cally exploring the parameter space of Pr, R, �, and � Fr
requires control over temperatures and pressure in the con-
vection cell as well as the vertical oscillations of the appara-
tus.

We control around two temperatures in the convection
cell. Both the vertical temperature difference ��T� and the

mean temperature �T̄� are controlled by linear proportional-
integral-derivative schemes that vary the heating of the bot-
tom mirror and the cooling of the sapphire crystal. Heat is
supplied by a resistive heater attached to the mirror bottom,
while a temperature-controlled water bath circulates water
through a closed chamber attached to the top of the contain-
ment vessel to cool the sapphire crystal. Uniform cooling is
verified by measuring the water temperatures at numerous
locations in the water chamber while constant power is sup-

plied to the mirror heater. Typically, T̄ is held fixed while �T

is either varied or also held fixed. Using this approach both T̄
and �T are maintained to within ±0.01 °C. Varying �T pro-
vides proportional changes in the parameter R, while main-

FIG. 3. Sketch of the experimental apparatus �not to scale� in-
cluding the imaging method, location of cooling water, pressurized
containment can, and kinematic mount.
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taining a constant T̄ fixes the material parameters, facilitating
systemic investigation of the nondimensional parameter
space.

Typically convection cell pressure is maintained at
32.72 bars by supplying compressed gas from a reservoir in
a upstream cylinder filled with 99.99% pure CO2. The pres-
sure in the cell is controlled by varying the heat to a small
gas reservoir downstream from the convection apparatus.
The pressure in the convection apparatus is regulated with an
accuracy better than ±0.01 bars under computer control us-
ing a high-resolution pressure sensor �SensoTec TJE/3883-
12TJA� while varying the reservoir temperature �and, hence,
the pressure� with a heating pad.

Vertical oscillations of the convection cell are generated
by custom designed hydraulic-shaker systems manufactured
by Team Corporation, Burlington, WA. The convection ap-
paratus is attached to a piston whose motion is driven by the
flow of oil at high pressure �120 bars�. Oil flow is regulated
by high performance electrodynamic servo valves which are
driven by an amplifier under closed loop control. Thus, con-
trolled oscillations of the piston are achieved by feeding an
oscillatory control voltage signal into the amplifier. The dis-
placement amplitudes of the oscillations are measured by a
linear variable displacement transducer �LVDT� attached di-
rectly to the piston. These measurements are augmented by
an accelerometer attached to the base of the convection ap-
paratus which records instantaneous accelerations. The hy-
draulic shaker is rigidly attached to a heavy mount �ballast�,
which in turn, rests on elastic supports to damp out vibra-
tional recoil.

Two different shaker assemblies are utilized. The bulk of
the experiments are performed using a hydraulic shaker with
maximum vertical stroke of �4 cm that is directly coupled
to the convection apparatus using a rigid mounting bracket.
In this arrangement, the convection apparatus exhibits hori-
zontal motions that are typically 0.04–0.08 cm; moreover,
the piston and apparatus are able to rotate slightly in a hori-
zontal plane. A limited number of studies are performed us-
ing a second hydraulic shaker with a maximum stroke of
�15 cm that is connected to the apparatus using a rectangu-
lar air bearing assembly. This configuration prevents rotation
and reduces lateral vibrations to approximately 0.008 cm.

Patterns are visualized using the established method of
shadowgraphy �28,29�. Compressed gases greatly enhance
the sensitivity of the shadowgraph �28� by refractive index
reinforcement and the relatively thin layers that may be stud-
ied. Shadowgraph images are captured using a CCD camera
interfaced with a computer controlled frame grabber. The
image acquisition is synchronized with the shaker drive by
use of a ferroelectric liquid crystal shutter. Pattern images are
acquired at a predefined phase of the oscillation that may be
varied.

Recorded images are analyzed predominately in terms of
spectral quantities. The time series of images recorded at
each fixed set of parameters are analyzed for the average
spectral components. Initially a background mask and a ra-
dial Hanning function are applied to each image to reduce
aliasing. After recording the variance of the processed image
a spatial Fourier transform is performed and the constituent

phase angles and power spectrum are found. Generally, the
power spectrum is normalized by the processed image vari-
ance so that the total power in the spectrum will sum to
unity. The power spectrum is then azimuthally averaged to
produce the radial spectrum ���q��. Radial power spectra for
all the images at a data point are then averaged to produce
���q�� and subsequently used to calculate the first two mo-
ments of the resulting distribution function in q,

�q� =

	
0

�

q2���q��dq

	
0

�

q���q��dq

, �1�

�q2� =

	
0

�

q3���q��dq

	
0

�

q���q��dq

. �2�

The global properties of the patterns at a given set of param-
eters may then be condensed into three spectral quantities,
the relative power, characteristic wave number �q= �q��, and
the width of the wave number distribution �
=
�q2�− �q�2�.
In patterns with several prominent wave numbers, eighth-
order Butterworth filters are applied to remove frequency
components outside those being considered.

B. Numerical methods

The convective flow is governed by the Oberbeck-
Boussinesq equations. In the frame comoving with the oscil-
lated layer the nondimensional form of these equations is

� · v = 0,

�2v + ẑ�1 +
����2

g
cos �t�� − � P =

1

Pr
�v · � v +

�v

�t
� ,

�2� + Rẑ · v = v · � � +
��

�t
, �3�

written in terms of the velocity v, the temperature deviation
� from the applied temperature profile, and the pressure P.
To nondimensionalize the equations the spatial scale d and
temporal scale tv are used. The effect of modulation appears
only in the additional time dependent buoyancy term
ẑ��2� Fr cos �t�� �19,20�. The so-called up-down Bouss-
inesq symmetry is not broken by the modulation. The equa-
tions are solved using realistic isothermal ��=0� and no slip
�v=0� boundary conditions at the confining upper and lower
plates. The incompressibility condition � ·v=0 is satisfied by
the introduction of a poloidal and a toroidal velocity poten-
tial.

For the characterization of two-dimensional roll solutions,
we follow the standard Galerkin approach �20�. The bound-
ary conditions at the plates are enforced by expanding all
fields with respect to the vertical coordinate z in appropriate
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test functions �trigonometric or Chandrasekhar functions�.
The dependence on the horizontal coordinates �periodic
boundary conditions� and on the time t are captured by Fou-
rier expansions. Linearization permits calculation of the criti-
cal Rayleigh number and the critical wave number as func-
tion of � Fr and � �Fig. 2�. The weakly nonlinear regime is
investigated on the basis of amplitude equations. In select
cases we confirm the numerical simulations by constructing
nonlinear roll solutions and examining these for secondary
bifurcations. Our computations are found to be in quantita-
tive agreement with previously published results �20,21,30�
for all the test cases that we examined.

To interpret the present experiments we found it was nec-
essary to perform direct three-dimensional numerical simu-
lations of Eqs. �3�. In contrast to the prior numerical inves-
tigation �31� that focused only on a small box with two rolls,
we find that assessing the resonant tetrad mechanism to be
discussed in the text requires a relatively large horizontal
extension. Only minor modifications are required to explic-
itly integrate in time the time-dependent buoyancy �a linear
term� together with the quadratic nonlinearities �30�. All the
simulations reported are based on our well-tested code for
standard Rayleigh-Bénard convection �2,30�. Typically, only
periodic boundary conditions are used in the lateral direc-
tions. In some cases we include non-Boussinesq effects using
the same approach employed for standard Rayleigh-Bénard
convection �2,3�. The essence of the approach is to expand
the temperature dependence of all material parameters about

T̄ to linear order. This results in non-Boussinesq correction
terms familiar from standard Rayleigh-Bénard convection
�2� and in a modification of the time-dependent buoyancy
term via the temperature dependence �at quadratic order� of
the density. In these cases an additional circular ramp in
applied temperature gradient is introduced to the periodic
lateral boundary condition �2� to match the experimental
convection cells.

Previously reported results for vertically oscillated con-
vection with heating from above have been limited to nu-
merical investigations of convection onset and the stability
of rolls �19,31�. Complex patterns have only been addressed
by Volmar and Müller �32�, who utilized a weakly nonlinear
amplitude equation model with ad-hoc quadratic non-
Boussinesq terms to predict the existence of some
hexagonal-type quasiperiodic crystals. In contrast, our simu-
lations establish the existence of complex convection pat-
terns on the basis of Boussinesq equations.

III. TRANSITION TO SQUARE QUASIPERIODIC
CRYSTALS

Within the parameter space region bounded by the har-
monic and subharmonic marginal stability curves for R larger
than R2c, where these curves intersect �Fig. 2�a��, modes of
the two temporal responses coexist. Interactions between the
coexisting harmonic and subharmonic patterns produce
complex-ordered states. Examples observed at ��100 are
shown in Figs. 4�a� and 4�b�. We call a pattern of this type a
square quasiperiodic crystal �SQC�. Like most of the
complex-ordered patterns found in this investigation SQCs

are generally quasiperiodic structures �Fig. 4�a�� that become
strictly periodic when constraints, to be introduced in Sec.
VI, on the dominant wave vectors are satisfied. We refer to
the periodic form of an SQC states as a square superlattice
�SQL�; an example of an SQL is shown in Fig. 4�b�. In the
experiments, nearly defect free SQCs, like that shown in Fig.
4�a�, form between R=6280 up to the maximum experimen-
tally accessible R�9300. Simulations find SQCs over a wid-
ening range of � Fr for R increasing from the bicritical point.
Results from experimental and numerical mappings of the
parameter range of stable SQCs are summarized in Fig. 5.

In the following, we report experiments and simulations
designed to investigate the formation of SQCs. To this end
results are presented near a specific shaking frequency ��
�100� where the bicritical point occurs at R2c�4500,
�2cFr�3.8�10−4 and the critical wave numbers are qc

H

�1.8 and qc
S�5.15. Section III A examines the transition

from the conduction state to complex-ordered convection.
We find evidence of primary onset to complex order at bi-
critical points. In these investigations Pr, �, and � Fr
��2cFr are held relatively constant while R is varied. Sec-
tion III B describes the transition from purely harmonic con-
vection to complex order observed when increasing � Fr at
fixed Pr, �, and R. Finally, by decreasing � Fr at fixed Pr, �,
and R we report on the transition from pure subharmonic
patterns to complex order in Sec. III C. Along these routes
one observes various disordered mixed states composed of
harmonic and subharmonic modes, as well as sharp transi-
tions to SQCs. We find that the disorder-order transitions are
clearly reflected in abrupt changes of the power spectra.

FIG. 4. A square quasiperiodic crystal and a square superlattice
observed in �a� experiment and �b� Boussinesq simulation, respec-
tively. Parameter values are �a� � Fr=3.88�10−4, �=95.3, R
=7030 and �b� � Fr=3.75�10−4, �=98, R=4750. Power spectra
for the experimental �c� and numerical �d� patterns both display 12
prominent peaks in Fourier space, q= �qx ,qy�.
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A. Transition from conduction

Both experiments and simulations maintaining Bouss-
inesq symmetry find parallel stripes at primary onset for both
purely harmonic �� Fr	�2cFr� and purely subharmonic
�� Fr��2cFr� flows. Simulations find SQCs very near the
bicritical point at �=98 ��2cFr=3.77�10−4 and R2c=4565�.
In particular at � Fr=�2cFr these complex-ordered states are
found to bifurcate directly from the conduction state at R
=R2c. Both harmonic and subharmonic modes contain virtu-
ally equal spectral power, which increases continuously from
zero as 
R−R2c, i.e., the complex-ordered patterns bifurcate
supercritically from conduction. As R increases, the range of
� Fr where SQCs are attracting becomes wider �Fig. 5�b��. A
second type of complex-ordered pattern �Fig. 6�a��, namely
stripe superlattices, arises for increasing R near the bicritical
point when � Fr	�2cFr. They bifurcate supercritically from
the base state of harmonic stripes and are found to contain
six spectral modes, a harmonic pair and two subharmonic
pairs �Fig. 6�b��. Stripe superlattices are found to be bistable
with SQCs over a relatively narrow parameter range �Fig.
5�b��.

When the temperature dependence of fluid properties �i.e.,
�, �, etc.� within the fluid layer cannot be neglected in
nonoscillating Rayleigh-Bénard convection the transition to
stripes is, in principle, preempted by a subcritical transition
to hexagons due to the non-Boussinesq effects. However, in
experiments at moderate �Tc the hexagon state is often not
resolved, since it becomes unstable to rolls �stripes� very
near to onset, which are typically observed �2�. Hexagon
patterns are also expected in the oscillating case near onset.
In fact they have been clearly seen in experiments �Fig. 7�a��
near the bicritical point in the harmonic regime where �Tc
��17 °C� and thus the non-Boussinesq effects are expected
to be significant. As mentioned in the Introduction, subhar-
monic hexagons are excluded by temporal symmetry. The
harmonic hexagons in the oscillating case have been con-
firmed in numerical simulations for � Fr��2cFr as well. An
example relatively close to the codimension-2 point is shown
in Fig. 7�b�.

FIG. 5. Phase plane boundaries for complex-ordered patterns observed in �a� experiments and �b� Boussinesq numerics at �=98.0. In
experiments SQCs are observed over the parameter range bounded by � with R�6300. At lower R values experiments find spatially
complex patterns ��� composed of patches with several cellular symmetries in the harmonic component. Boundaries found in Boussinesq
numerics are denoted by � for SQCs and � for stripe superlattices �these are discussed in Sec. III A�. The dotted box in �a� is the parameter
range shown in �b�. SQC boundary lines from experiments compare well with boundaries found in Boussinesq numerics for R�6280; for
example, the numerical ��� and experimental ��� boundaries are compared at R�6300 in �a�.

FIG. 6. Boussinesq simulations find a periodic complex-ordered
pattern over a narrow parameter range �Fig. 5�b��. These �a� stripe
superlattices �� Fr=3.732�10−4, �=98, R=4794� are constructed
of �b� six modes.

FIG. 7. Coexistence patterns close to bicriticality display hexa-
gons in the harmonic component when non-Boussinesq effects are
present. Similar observations are made in both �a� experiments �
� Fr=3.77�10−4, �=97.3, R=4946� and �b� non-Boussinesq simu-
lations that include an additional circular ramp in the periodic
boundary conditions �� Fr=3.75�10−4, �=98, R=4750�.
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As a representative example for the pattern evolution near
bicriticality observed in the experiments we will describe the
transition that occurs at ��95 and fixed � Fr��2cFr. Ini-
tially the system is in a state of conduction with R	R2c
�4565. Slowly increasing R �to R�4780�, small localized
regions of subharmonic stripes occur on the harmonic hexa-
gons �Fig. 8�a�� bifurcating at threshold. Further increasing R
�to R�4900�, the subharmonic stripes begin to appear
throughout the whole pattern superimposed on a mixed har-
monic hexagon-stripe state �Fig. 8�b��. Continuing into the
coexistence parameter region, harmonic hexagons become
less pronounced as patterns with domains of locally hexago-
nal, square, and rhombic symmetries begin to form �Fig.
8�c��, similar to those first reported in Ref. �22�. Eventually
�R�6270�, the harmonic component displays mainly do-
mains of locally square symmetry �Fig. 8�d�� from which
eventually regular SQCs emerge via an abrupt transition.

Changes in the experimental power spectra are observed
as parameter values are varied to move the system from con-
duction to the SQC state. As shown in Fig. 5�a�, the param-
eter region of SQC states tends toward smaller � Fr with
increasing R. Thereby, beginning from a stable conductive
state in the vicinity of the bicritical point R is increased while
� Fr is slowly decreased. At a given � the bicritical point
��2cFr,R2c� may be used to define a measure of distance into
the coexistence region given by

S2c =
1

2

� � Fr

�2cFr
− 1�2

+ � R

R2c
− 1�2�1/2

. �4�

Experiments following the described path find the total spec-
tral power in the two-dimensional wave-number domain in-

creases continuously as the system moves from conduction
into coexistence states �Fig. 9�. The presence of harmonic
hexagons near the transition from conduction suggests the
bifurcation is subcritical; however, the subcriticality is also
expected to be difficult to detect �2�. Consistent with this
expectation experiments find no hysteresis in the total spec-
tral power. Since the harmonic and subharmonic contribu-
tions to coexistence patterns occur at distinct wave numbers,
the spectral power in each may also be determined by sum-
ming the power in distinct wave-number bands centered on
qH and qS �Fig. 9�. As S2c is slowly increased, moving the
experiment into the parameter range of coexisting patterns,
the spectral power for the qH and qS bands smoothly in-
crease, with the power in the qS band larger than the power
in the qH band. However, at the onset of the SQC state
�S2c�0.3� the power distribution shifts abruptly as the qH

band power increases and the qS band power decreases so
both bands contain approximately equal power �solid sym-
bols in Fig. 9�. This shift is always observed at the onset of
complex-ordered states and is suggestive of increased inter-
actions between the qH and qS wave vectors.

B. Transition from pure harmonics

Beginning from a state of purely harmonic resonant con-
vection and sufficiently large R, there is a well-defined tran-
sition to SQCs as � Fr is increased �Fig. 5�. In the state of
purely harmonic convection the pattern typically consists of
parallel stripes with defects, including disclinations, disloca-
tions, and foci �Fig. 10�a��. With increasing � Fr at constant

FIG. 8. Patterns �experiment� observed passing from conduction
to convection by slowly increasing R at � Fr��2cFr. Corresponding
parameters are �a� � Fr=3.89�10−4, �=95.0, and R=4778, �b�
� Fr=3.88�10−4, �=95.1, and R=4907, �c� � Fr=3.88�10−4, �
=95.0, and R=5389, and �d� � Fr=3.73�10−4, �=96.7, and R
=6267.

FIG. 9. Integrals of the power spectrum magnitude �arbitrary
units� in the total power spectra ���, harmonic wave-number band
���, and subharmonic wave-number band ��� depending on S2c

�Eq. �4�� for � Fr��2cFr. Solid symbols denote the presence of a
SQC pattern. Observed patterns at four representative parameter
values are shown. The dotted lines are the corresponding values of
S2c. Larger versions of these patterns may be found in Fig. 8. Solid
lines show fits of the open symbol data using the least squares
method. Solid symbols are not used in the least squares fits and
suggest �see text� interactions between stimulated length scales.
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R, localized domains of subharmonic stripes emerge with a
characteristic wave number qS slightly less than 3qH. As can
be seen in Fig. 10�b� these subharmonic domains are usually
either centered about defects in the harmonic pattern or
aligned perpendicular to the lateral boundaries. Subharmonic
stripes at the lateral boundary typically remain pinned to the
boundary and do not move into the interior. Harmonic de-
fects continually nucleate, become advected, and annihilate
in the pattern interior. These persistent dynamics drive the
behavior of the subharmonic patches, which correspondingly
appear, move, and disappear. Although harmonic defects are
virtually always present for parameter values near the
harmonic-subharmonic coexistence boundary, not all these
harmonic defects have associated subharmonic patches. As
a result the subharmonic components are intermittent in
time near coexistence onset for a range of � Fr of width
�4�10−6. The subharmonic onset is difficult to detect in
power spectra because spatial and temporal intermittency
gives rise to a small spectral component that is nearly indis-
tinguishable from background noise and the second har-
monic of qH �compare Fig. 11�a� and Fig. 11�b��. The tran-
sition is more reliably identified using the real space patterns.
Thus the onset value of � Fr for a given R is defined as the
presence of subharmonic patches in the pattern interior for at
least 10% of the observation time.

The experimentally measured boundary for the emergence
of subharmonic convection when harmonic convection is al-
ready established follows the subharmonic marginal stability
curve �dashed in Fig. 12�. The observed shift indicates the
bifurcation of subharmonic modes, though their linear
growth rate is already positive, is delayed by their interaction
with the finite amplitude harmonic pattern. However, in the
cores of defects this stabilizing mechanism is reduced due to
smaller harmonic flow amplitudes �33�. Thereby subhar-
monic patches associated with harmonic defects are a precur-
sor to the coexistence transition in the pattern bulk.

In the parameter region between coexistence onset and the
formation of SQCs, patterns display gradual changes. From
inspection of the patterns the subharmonic component re-
mains spatially localized and intermittent even as � Fr is in-
creased �at fixed R� to move the system well away from the
pure harmonic-coexistence boundary �Fig. 12�. The spectral

contribution of the subharmonic pattern component, shown
in Fig. 13�a�, gradually increases with increasing � Fr. Over
this parameter range the wave number of harmonic modes qH

remains relatively fixed �Fig. 13�b��. Additionally, the spec-
tral width 
H decreases �Fig. 13�c�� because the harmonic
pattern exhibits fewer defects as the system moves further
away from the pure harmonic-coexistence boundary.

Moving further into coexistence by increasing � Fr, the
transition to SQCs from the mostly harmonic patterns con-
taining localized subharmonics is abrupt. Just prior to this
transition there is a pronounced increase in the subharmonic
component in patterns. Typically this transition occurs over a
relatively narrow range of � Fr��5�10−6� and corresponds
to the harmonic planforms separating into multiple domains.
At the transition, the harmonic modes contain �60% of the
total power and values of qH and 
H �Fig. 13� attain mini-
mums. In contrast, the wave number of the subharmonic
modes qS is near its maximum observed value. Simulations
of the Boussinesq equations at these relatively large values
of R predict well the transition from localized coexistence
patterns to SQCs �Fig. 5�a��. This result indicates that non-
Boussinesq effects play an insignificant role in the formation
of complex-ordered patterns further away from the bicritical
point.

C. Transition from pure subharmonics

The evolution of purely subharmonic convection patterns
with decreasing � Fr exhibits a sequence of coexisting pat-

FIG. 10. Patterns �experiment� on either side of the purely
harmonic-coexistence boundary. Pure harmonic stripes �a� with de-
fects �� Fr=3.31�10−4, �=98.0, R=6280�. Coexistence state �b�
with 3-foci harmonic stripes and subharmonic stripe patches �� Fr
=3.54�10−4, �=98.0, R=6280�.

FIG. 11. Averaged radial power spectra �experiment� for three
different transitions to coexistence with local maxima near q=qH

and q=qS�qH. Each radial spectrum shown is the average over 40
spectra computed from the spatial images recorded at each set of
parameters. Pure harmonic-coexistence ��a� and �b�� transition oc-
curring at R=6280. The pure subharmonic-coexistence transitions
occurring at R=4980 ��c� and �d�� and well-developed coexistence
patterns at R=6280 ��e� and �f��. Representative images from each
data point are shown in other figures, �a� see Fig. 10�a�, �b� see Fig.
10�b�, �c� see Fig. 14�a�, �d� see Fig. 14�b�, �e� see Fig. 14�c�, and
�f� see Fig. 14�d�.
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terns that are qualitatively different from those observed in
the transition from pure harmonic side �see Sec. III B�. Pure
subharmonic patterns lose stability to coexisting states as the
harmonic component emerges globally; no localized harmon-
ics are observed. For �=98.0 we will distinguish two cases,
�1� R2c	R	5500 and �2� R�5500. The experiments do not
observe a transition to SQCs in case �1�, in contrast to the
simulations, while in case �2� both experiments and simula-
tions find a transition to SQCs.

Approaching the coexistence region starting from pure
subharmonic parallel stripes �Fig. 14�a�� by slowly decreas-
ing � Fr at fixed R for R2c	R�5500 �case �1�� a harmonic
pattern component emerges at a well-defined location in pa-
rameter space and begins to be present throughout the pat-
tern. For instance in Fig. 14�b� the weak harmonic stripes
rising from left to right at an angle of approximately 30° to
the horizontal and possessing a wavelength about 3 times
that of the prevalent subharmonic stripes are clearly visible.

Although the harmonic component is weak at the pure
subharmonic-coexistence onset, the transition is well defined
and readily detectable in Fourier space by looking for the
initial presence of power at qH �Figs. 11�c� and 11�d��. Typi-
cally, the emerging harmonic component consists of fairly
large patches of parallel stripes which may display domains
with several orientations. In this parameter range, the coex-
istence transition is well predicted by the conduction mar-
ginal stability curve solid line in Fig. 12, suggesting that in
contrast to the transition described in Sec. III B the onset of

bifurcating mode �harmonic convection� is, loosely speaking,
neither enhanced or suppressed through the interaction with
already existing finite amplitude subharmonic flows. Hyster-
esis is not experimentally observed in the transition between
pure subharmonic flows and the coexistence regime.

For R�5500 �case �2�� the coexistence states compete
with more complex pure subharmonic flows. For 5500�R
�7000, subharmonics with transverse modulations �Fig.
14�c�� are found when � Fr is relatively large �Fig. 12�. As
� Fr is decreased at constant R and crosses the conduction
marginal stability boundary, the flow structure changes
gradually to patterns like that shown in Fig. 14�d�. In all
cases, these states are difficult to distinguish spectrally be-
cause they contain spectral peaks with similar power content
at wave numbers corresponding to both qS and qH �Figs.
11�e� and 11�f��. As a result, the onset of the coexistence
regime from pure subharmonics is ill defined for R�5500.
At even larger R �R�7000� patterns display no clear spatial
structure, instead showing regions of varying shadowgraph
intensities consisting of plume structures �not shown�. For
R�7000 the structurally disordered state becomes more or-
dered with decreasing � Fr.

Spectral analysis demonstrates that the gradual nature of
the transition from pure subharmonics to coexisting patterns
continues as � Fr is further decreased. For R�5500 the
growing harmonic stripes have little effect on the subhar-
monic stripes as the two components are simply superim-
posed. For 5500�R�7000 the subharmonic striped base
state that supports the transverse modulations gradually
breaks down as numerous domains form �Figs. 14�c� and
14�d��. Typically, these domains nucleate in the pattern inte-
rior and spread to fill the pattern with decreasing � Fr. Re-
gardless of the R value the spectral measures display similar
trends. First, relative power in �S gradually decreases and �H

slowly increases as the harmonic pattern becomes more sig-
nificant �Fig. 13�a��. Second, qH �Fig. 13�b�� remains rela-
tively fixed while 
H decreases �Fig. 13�c��. Simultaneously,
qS slowly increases while 
S remains relatively constant.
These similarities indicate that as the pattern passes further
into coexistence the harmonic pattern slowly grows and be-
comes more regular while �S slowly decreases and qS in-
creases.

Upon further decreases of � Fr, the subharmonic domi-
nated coexistence patterns abruptly lose stability to SQC pat-
terns. At this transition, the subharmonic modes contain
�60% of the total power. Experimental investigations ob-
serve no hysteresis in the formation of SQCs. The formation
time for a single cell-filling domain of harmonic squares in
an SQC state becomes substantially larger near the transition
boundaries with both harmonic dominated and subharmonic
dominated coexistence patterns. Simulations of the Bouss-
inesq equations at these large values of R agree with the
transition from subharmonic dominated coexistence patterns
to SQCs. A comparison for a particular value of R is shown
in Fig. 5�a�. These observations further support that non-
Boussinesq effects play an insignificant role in the formation
of complex-ordered patterns further away from the bicritical
point.

FIG. 12. Phase plane ��=98� comparing the experimentally
measured onset of coexistence to the linear marginal curves for
conduction; see also Fig. 2. Boundary between coexistent and
purely harmonic flows ��� follows the marginal subharmonic
�� /2� curve �dashed line�, while the boundary between coexistent
and purely subharmonic patterns ��� tracks the marginal harmonic
��� curve as far as the boundary can be reliably determined. Solid
triangles are the locations of patterns in Figs. 10�a�, 10�b�, 14�c�,
and 14�d�, also shown along the top row as indicated.
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IV. RESONANT TETRADS

Analysis of power spectra for the observed complex pat-
terns demonstrate that these states are described by a few
interacting spectral modes and generally form a quasiperi-
odic crystals. SQCs �Fig. 4� have spectra with twelve domi-
nant peaks in two distinct wave number bands, as shown in
Fig. 15�a�. The four peaks ±�q1

H ,q2
H� correspond to the har-

monic square sublattice. The eight peaks ±�q1
S ,q2

S ,q3
S ,q4

S�
correspond to the small length scale subharmonic stars �Fig.
4�a��. The stripe superlattices �Fig. 6�a�� exhibit six dominant
peaks. The harmonic stripe sublattice corresponds to the two
peaks at ±q1

H while subharmonic sublattice corresponds to
peaks at ±�q1

S ,q2
S�.

Interactions between the modes from the harmonic and
subharmonic sublattices are found to satisfy resonance con-
ditions. The spectral peaks for SQCs form the vertices of
parallelograms between a pair of the harmonic and a pair of
the subharmonic peaks �Fig. 15�a��. Existence of these par-
allelograms suggests the four wave resonance �resonant tet-
rad� conditions,

±�q1
H − q2

H� = ± �q1
S − q2

S� , �5�

±�q1
H + q2

H� = ± �q3
S − q4

S� . �6�

In both experiments and numerics SQCs always satisfy these
resonant tetrad conditions. In the vicinity of the bicritical
point the parallelograms formed by the modes become rect-

FIG. 13. Spectral quantities during the transition �experiment� from pure harmonic convection to pure subharmonic convection through
a coexistence region. Experiments pass through coexistence by increasing � Fr at R=6280±10. Each radial spectrum used to calculate these
quantities is an average over 40 spectra computed from the images recorded at each set of parameters. The averaged radial spectra for both
the harmonic and subharmonic modes are characterized by �a� the spectral power in each mode—�H and �S, �b� the mode wave numbers—
qH and qS, �c� the widths of the spectral peaks—
H and 
S, and �d� the wave-number ratio qS /qH. Throughout, � indicates harmonic pattern
component and � the subharmonic pattern component. Filled in symbols correspond to patterns shown in Figs. 10�a�, 10�b�, 14�c�, and
14�d�. The dashed lines are the boundaries of coexistence and the dotted lines are the boundaries of SQCs.

FIG. 14. Patterns �experiment� on either side of the pure
subharmonic-coexistence transition ��=98.0� for R=4980 ��a�
� Fr=3.80�10−4 and �b� � Fr=3.69�10−4� and R=6280 ��c� � Fr
=3.93�10−4 and �d� � Fr=3.77�10−4�.
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angles. Further from onset, subharmonic spectral peaks
translate short distances along the straight lines formed by
the box passing through the eight subharmonic peaks allow-
ing the �qi

S� �i=1, . . . ,4� to take on different values for all i,
while always satisfying Eqs. �5� and �6�. Experiments indi-
cate that with increasing R the SQC wave vectors have rela-
tively constant qH �0.91q2c

H �qH�0.94q2c
H � and that qS de-

creases monotonically from 0.92q2c
S at R=6280 to 0.77q2c

S at
R=8920. A four wave resonance condition also applies for
the stripe superlattices; in this case, the condition is given by

±2q1
H = ± �q1

S − q2
S� . �7�

This resonance condition is a tetrad between modes at qH and
qS with a self-interaction term for the harmonic mode �Fig.
15�b��.

The noted prominence of the 12 modes satisfying reso-
nant tetrad conditions �Eqs. �5� and �6�� suggests the SQCs
may be represented using the ansatz of an eigenmode expan-
sion in the spirit of a weakly nonlinear analysis. We represent
the temperature field � and velocity field v �Sec. II B� as a
symbolic vector V �x ,z , t�= (��x ,z , t� ,v). The shadowgraph
intensity reflects the horizontal variations of ��x ,z , t� �29�.
Linear stability analysis of Eqs. �3� yield the linear eigenvec-
tors VH,S�q ,z , t� and the corresponding growth rates
�H,S�q ,R� for the harmonic and subharmonic responses, re-
spectively. Above the corresponding threshold curves �Sec. I�
the real part of the growth rates become positive. The time
dependence of the harmonic and subharmonic eigenmodes
�VH and VS� is given by Floquet’s theorem,

VH,S�q,z,t� = Re�et�H,S �
n=−�

�

cn
H,S�q,z�ein�t� , �8�

normalized such that �c0
H,S�q ,z=0��=1 with Floquet expo-

nents �H=0 for harmonic modes and �S= i� /2 for subhar-
monic modes. Since the mode VH is essentially sinusoidal
about nonzero mean, only the first two terms �n=0 and n±1�
need to be retained. In contrast, VS requires at least three
harmonics �n= ±1, ±3, ±5� of � /2. In the framework of the
weakly nonlinear reformulation, the ansatz for ideal SQC is

V�x,z,t� = Re��
j=1

2

Aj�t�VH�q j
H,z,t�eiqj

H·x�
+ Re��

j=1

4

Bj�t�VS�q j
S,z,t�eiqj

S·x� . �9�

Inserting Eq. �9� into the Boussinesq equations and system-
atically expanding in terms of the amplitudes, which are
small near onset, up to cubic order produces coupled ampli-
tude equations for A and B given by

d

dt
A1 = �H�q1

H�A1 + �1A1 + �11A2B1B2
* + �12A2

*B3B4
*,

d

dt
A2 = �H�q2

H�A2 + �2A2 + �21A1B2B1
* + �22A1

*B3B4
*,

d

dt
B1 = �S�q1

S�B1 + �3B1 + �31B2A1A2. �10�

The standard cubic terms with coupling constants cij are

� j = c1j�A1�2 + c2j�A2�2 + c3j�B1�2 + c4j�B2�2 + c5j�B3�2

+ c6j�B4�2. �11�

The resonant mode interactions are given by the terms
�A2B1�B2�*, �A2�*B3�B4�*, etc., with coupling constants �ij

that are the strengths of the interactions. The remaining equa-
tions for the amplitudes Bj in Eq. �9� are obtained by cyclic
permutations of the indices. Note that the presence of Bouss-
inesq symmetry invariance under spatial inversion rules out
quadratic couplings.

We have calculated the coefficients cjj �j=1, . . . ,6�,
which determine the saturation of the amplitudes Aj and Bj.
They were always positive, consistent with the observed su-
percritical bifurcation of both the harmonic and subharmonic
rolls at threshold. The tedious calculation of the cross coef-
ficients which govern the stability of the SQCs and the val-
ues of the finite amplitudes A and B has not been carried
through. Instead we have confirmed the relevance of the am-
plitude equations �10� by extracting the amplitudes from nu-
merical simulations of SQCs by the suitable projections with
the eigenmodes VH ,VS. In fact, to represent a snapshot of a
SQC where the spectral peaks form rectangles �Fig. 4�b��
only two constant real amplitudes, A and B with A=A1
=−A2 ,B=B1=B2=B3=B4, are required by Eq. �9�. It turns
out that the time evolution of the SQCs is described by
AVH�t� and BVS�t� with adjusted amplitudes A and B �Fig.
16�. For fixed Pr, � Fr=�2cFr, and � the amplitudes increased
proportionally to the square root 
�R−R2c� of the distance
from onset, confirming the forward bifurcation.

Although we have not calculated all coefficients in Eq.
�10� it is possible to reveal some general properties of the
solutions A and B. Initially, we find it useful to characterize
the complex amplitudes by their moduli and phases,

Aj = �Aj�exp�i� j�, j = 1,2,

FIG. 15. Power spectra for: �a� the SQL in Fig. 4�a� and �b� the
stripe superlattice shown in Fig. 6�a�. Arrows point to modes com-
prising a resonant tetrad, these are emphasized by the dotted and
dotted-dashed lines. The dotted-dashed lines are difference vectors
defined in Eqs. �21�
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Bk = �Bk�exp�i�k�, k = 1, . . . ,4. �12�

The amplitudes and phases can be easily extracted from our
numerical solutions by projecting the solutions on the linear
eigenvectors VS,H�q ,z , t�. Due to the invariance against
translations in the plane, patterns are in fact physically
equivalent, if their phases differ by certain shifts ��i and ��i,
obeying the constraints

��1 − ��2 = ��1 − ��2,

��1 + ��2 = ��3 − ��4. �13�

This invariance property is also directly reflected in the am-
plitude equations. In all simulations we found the following
relations hold:

�1 − �2 + n� = �1 − �2,

�1 + �2 − n� = �3 − �4, �14�

for arbitrary odd integers n. This relation expresses the reso-
nance between the harmonic and subharmonic modes. For
definiteness we can always fix the harmonic phases to �1
=0 and �2=�. Since only two conditions are left to deter-
mine the four subharmonic phases, two of them remain un-
determined in the framework of Eqs. �10�. This freedom can
be interpreted as a shift of the short wavelength structures
due to the four subharmonic modes relative to the harmonic
backbone lattice. There should exist a locking mechanism as
a result of nonlinear couplings, automatically included in the
Boussinesq equations, at orders beyond the cubic in the am-
plitude equations. However, in addition to the conceptual
difficulty described in Ref. �34� such calculations are cum-
bersome �35� and thereby beyond the scope of this paper.
Simulations using random initial conditions always lock into
a stationary set of phases; however different runs yield dif-
ferent sets of phases for fixed external parameters �Pr, R,
� Fr, and ��. We have been unable to classify these further,
in particular since the corresponding patterns look practically
identical. The subharmonic phases are expected to present a

soft degree of freedom, easily susceptible to all kinds of
small perturbations �for example, boundary effects�.

We have not performed a detailed investigation of the
analogous coupled amplitude equations for the stripe super-
lattice �Fig. 6�a��; these contain a resonant coupling
��A�*B1�B2�*. The stripe superlattices can be described
analogously by Eq. �9� with one harmonic amplitude A and
two subharmonic amplitudes B1,2, where B1=B2= iB.

In the non-Boussinesq experiments and numerics, har-
monic hexagonal background patterns observed in the vicin-
ity of the bicritical point would delay the onset of SQCs. In
this case, quadratic couplings in the amplitude equations are
allowed between the harmonic modes, while quadratic cou-
plings remain forbidden between the subharmonic modes
due to the temporal symmetry. In the case of a hexagonal
backbone, we must consider the presence of three harmonic
basis wave vectors pi �i=1,2 ,3� ��pi�=qH� satisfying the
constraint that the basis vectors sum to zero �p1+p2+p3

=0�. We have not investigated in detail the possibility of
resonant couplings to the subharmonic modes, which accord-
ing to Fig. 8 should exist.

V. OTHER COMPLEX-ORDERED PATTERNS

Preliminary experimental and numerical investigations
demonstrate that a wide variety of quasiperiodic crystals and
superlattices, all governed by resonant tetrads, exist in the
current system. Due to the resonance conditions the spatial
structure of these patterns is mainly determined by the ratio
qS /qH�1, which depends sensitively on � through the ratio
of wave numbers at bicriticality qS /qH�q2c

S /q2c
H . A different

group of wave-number ratios �qS /qH	1�, that also depend
sensitively on �, exist when the system is heated from above
�R	0�. Several representative examples of variations in
complex order are shown below.

A. Heating from below

When the convection cell is heated from below R�0 we
find a range of complex-ordered patterns. Examples are
shown for �=40 in Fig. 17�a� and �=300 in Fig. 17�b�.
These complex-ordered patterns are qualitatively similar to
those observed at ��100 due to the harmonic component
forming a regular square sublattice on which the subhar-
monic structures exist. However, the subharmonic small
scale component of these patterns becomes more complex
with increasing �. At �=40 SQCs with subharmonic crosses
form with qS /qH=2.236, at ��100, qS /qH=2.912 one sees
stars with more spikes, while at �=300 with qS /qH=5.42
one observes well ordered multispike stars.

All these complex-ordered patterns satisfy similar reso-
nant tetrad conditions. The patterns for �=40 and ��100
present only quantitative differences in their spectral struc-
ture �Figs. 4�c� and 17�c�� consistent with the tetrad condi-
tions in Eqs. �5� and �6�. At �=300 the spectral structure
changes as six pairs of peaks now span the subharmonic
component. This SQC satisfies a kind of “duplicated” reso-
nant tetrad condition compared to Eqs. �5� and �6�,

FIG. 16. The temporal variation �simulation� of linear eigenvec-
tors multiplied with adjusted amplitude factors A=0.0382, B
=0.0108 �see text� at � Fr=3.732�10−4, R=4790 for the harmonic
�upper curve� and subharmonic �lower curve� modes, respectively.
Comparison is made with the numerical amplitudes of the Fourier
modes at q1

H ��� and q1
S ���, respectively, for the SQC midplane

temperature field T�x , t����x ,z=1/2 , t� in units of �T.
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±�q1
H − q2

H� = ± �q2
S − q1

S� = ± �q3
S − q2

S� , �15�

±�q1
H + q2

H� = ± �q5
S − q6

S� = ± �q4
S − q5

S� . �16�

A qualitatively different rhombic quasiperiodic crystal
�RQC� is found in both experiments and simulations �Figs.
18�a� and 18�b�� when � is sufficiently small. For RQCs the
harmonic and subharmonic sublattices are defined by two
pairs of spectral peaks, while the SQC subharmonic sublat-
tice has four pairs of peaks. �Compare Figs. 15�a�, 18�c�, and
18�d�.� The RQCs also satisfy one of the resonant tetrad
conditions �Eq. �5�� found earlier for SQCs. Experiments
find RQCs at �=50 with qS /qH=2.23, in contrast to the
simulations, which showed quasiperiodic crystals qualita-
tively similar to those studied more extensively at �=98, but
with a smaller wave-number ratio qS /qH=2.24. In the simu-
lations it was necessary to reduce the oscillation frequency to
below �=40, to identify RQCs as shown for qS /qH=2.08.
The reasons for the discrepancies in parameter values be-
tween experiment and simulations for RQCs have not been
investigated in detail, but a competition of the SQC and RQC
attractors in a certain � range may well exist.

B. Heating from above

Simulations of the qualitatively different case of adding
heat to the convection cell from the top plate �R	0� also
find complex-ordered patterns �Fig. 19�. Our investigations
of heating from above are restricted to numerical simula-

tions. In contrast to the heating from above case, the onset
subharmonic wave numbers are smaller than the harmonic
ones �qc

S	qc
H�. Critical Rayleigh numbers and critical wave

numbers are presented in Figs. 2�c� and 2�d�, respectively.
Looking in the vicinity of the bicritical points we again find
complex-ordered patterns. While SQCs are not yet found in
this case, a state �Fig. 19�a�� that is qualitatively similar to
the stripe superlattices �Fig. 6�a�� is observed. The wave-
number ratio of this pattern is qj

S /qj
H=0.479.

The corresponding resonant tetrad condition takes a form,

±2q1
S = ± �q1

H − q2
H� , �17�

identical to Eq. �7� with the transposition �S→H ,H→S�.

VI. CLASSIFYING COMPLEX ORDER

Complex-ordered patterns reported in Secs. III and V and
designated as quasiperiodic crystals or superlattices may be

FIG. 17. Complex-ordered patterns �Boussinesq simulation� ob-
served at other oscillation frequencies. At �=40 �a� regular subhar-
monic crosses on a square harmonic sublattice are observed �� Fr
=12.375�10−4 and R=4000�, while at �=300 �b� the subharmonic
component forms multispike stars �� Fr=1.167�10−4 and R
=7800�. The pattern in �a� has the same spectral structure �c� as the
SQCs �Figs. 4�c� and 4�d��. In contrast, the pattern in �b� has a
power spectrum �d� with 12 subharmonic peaks.

FIG. 18. Rhombic quasiperiodic crystals observed in experi-
ments �a� and Boussinesq simulations �b�. Corresponding power
spectra are shown in �c� and �d�, respectively. Parameters values are
experiment Pr=0.928, � Fr=8.92�10−4, �=50.4, R=5180 and
simulations Pr=0.930, � Fr=16.74�10−4, �=33, R=3800.

FIG. 19. Stripe superlattice �Boussinesq simulation� observed
with heating from above �a� at � Fr=25.2�10−4, �=50,
R=−2800. Corresponding power spectrum �b�.
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distinguished on the basis of periodicity. All of the observed
patterns are found to be characterized in Fourier �q� space by
relatively few wave vectors. These wave vectors are grouped
in two distinct classes based on magnitudes and form paral-
lelograms satisfying the appropriate resonant tetrad condi-
tions. Due to the prominence of the longer length scale
�smaller q� sublattice, the reported states display an obvious
regularity in position space �i.e., square, hexagonal, or rhom-
bic�. Defining appropriate linear combinations of the domi-
nant wave vectors, the requirements for the observed spatial
regularity to be periodic can be formulated. These require-
ments permit a general classification of the patterns on the
basis of concepts formulated in crystallography.

For clarity we briefly restate relevant definitions of Ref.
�9�, where Lifshitz proposes nomenclature for patterns char-
acterized in Fourier space by a countable set of L wave vec-
tors. The set L �i.e., Fourier module� consists of integral
linear combinations of a minimum number D of basic wave
vectors qi �i=1, . . . ,D�. If D is greater than the physical
dimension d of the pattern �two, in the present case� the state
is called a quasiperiodic crystal pattern. In practice not all
modes of L need to be excited and typically only a few
dominant ones determine the gross features of the pattern. In
the case of D=d the pattern is strictly periodic and is called
a superlattice pattern. The Fourier module is then identical
to the conventional reciprocal lattice in crystallography and
two basis vectors qi �i=1,2� span a primitive unit cell in
reciprocal space. The corresponding pattern is thus spatially
periodic �translationally invariant� against all discrete trans-
lations formed by linear integral combinations of primitive
basis vectors ai �i=1,2�, that satisfy the conditions

qi · a j = 2��i,j �i, j = 1,2� . �18�

To correlate these statements with the observed complex
states consider the patterns shown in Figs. 4�a�, 4�b�, 17�a�,
and 17�b�. Similar to the majority of states observed in these
investigations the harmonic backbones are squares carrying
stars at the lattice points. We name these states by the domi-
nant regular structure; SQC patterns have a square backbone
and RQC patterns have a rhombic backbone. The corre-
sponding superlattice patterns �D=d=2� are special cases
that, despite their disparate length scales ��2� /qH and
�2� /qS, respectively�, are spatially periodic.

For the SQCs, without lack of generality, the backbone
square lattice derives from the two orthogonal basis vectors

q1
H = qH

„cos���,sin���… ,

q2
H = qH

„− sin���,cos���… , �19�

which for �=0 would be aligned along the x and y axis,
respectively. The basis vectors ai

H of the ensuing Bravais
lattice in position space, which are parallel to qi

H are

a1
H =

2�

�qH�2q1
H and a2

H =
2�

�qH�2q2
H. �20�

The lattice constant aSQ of the square lattice is given by
aSQ=2� /qH. The resonant tetrad conditions, Eqs. �5� and �6�,

are guaranteed if the following ansatz for the subharmonic
wave vectors qi

S �i=1, . . . ,4� is used:

qi
S = qi

H + p12 �i = 1,2� ,

qi
S = �− i�i−1qi−2

H + p34 �i = 3,4� . �21�

The vectors pij are shown in Fig. 15�a�.
The special case of SQLs �D=2� is realized if the pij can

be represented as commensurate linear combinations of the
harmonic vectors as

p12 = C1q1
H + C2q2

H and p34 = C3q1
H − C4q2

H, �22�

where the coefficients Cj =mj /nj �j=1, . . . ,4� are rational
numbers constructed from relative prime integers mj , nj. The
SQL is then strictly periodic with respect to two basic trans-
lations

ai
SL = kiai

H �i = 1,2� , �23�

with k1 the least common multiple of the integers n1 and n2
as well as k2 the least common multiple of n3 and n4. �Note
that as a consequence of ai

SLq j
S=ki2��ij, all scalar products

of the ai
SL �i=1,2� and the q j

S �j=1, . . . ,4� from Eqs. �21�
and �22� give integer multiples of 2��. Consistent with Eq.
�18� the basic real space translations ai

SL �i=1,2� are associ-
ated with the shorter basis vectors qi

H /ki �i=1,2� in Fourier
�reciprocal� space. These are then consistent with the larger
periodicity cell in position space �Eq. �23��.

The relationship between harmonic and subharmonic
wave numbers is simplified when the SQL spectral parallelo-
grams become rectangles �as in the numerical example in
Fig. 4�d��. In this case the constants Cj =mj /nj become equal,
i.e., mi=m �i=1, . . . ,4� and ni=n �i=1, . . . ,4�. Then Eqs.
�21� and �22� indicate that the wave vectors qi

S �i=1, . . . ,4�
all have the same magnitude qS. The vector p12 encloses an
angle of 45° with a1

H and an angle of 90° with p34, as evident
from Fig. 15�a�. The corresponding qH and qS are related to
the integer ratio m /n by

qS = qH
��1 + m/n�2 + �m/n�2� , �24�

using Eq. �21�.
The physics of incommensurate structures has been devel-

oped in the context of solid state studies where the spatial
extension of the systems is typically very large in compari-
son to the basic atomic lattice constant. In these systems
quasiperiodic structures originate from additional mecha-
nisms �i.e, in charge density waves� associated with a char-
acteristic length scale not commensurate with the lattice con-
stant.

In hydrodynamic pattern forming systems it is difficult to
distinguish truly incommensurate patterns. Directly above
the bicritical threshold the ratio qS /qH is virtually fixed by
critical values to qc

S /qc
H. By tuning the experimental param-

eters � and � Fr, the ratio qc
S /qc

H can, in principle, be
changed continuously in such a way that the ideal commen-
surability according to Eq. �24�, i.e., a perfect SQL, is
achieved. However, for R�Rc bands of linearly unstable
harmonic and subharmonic modes become accessible, per-
mitting the system at fixed � and � Fr increasing freedom to
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internally adjust the harmonic and subharmonic wave vectors
to avoid incommensurability. Thus for the regular SQL any
ratio qS /qH can be represented to arbitrary accuracy by Eq.
�24� with properly chosen integers m� m̄ and n� n̄.

Unlike solid systems, finite size effects are expected to
play a major role in fluid pattern formation. For values of n̄
such that the length of the basis vectors n̄aSQ becomes com-
parable to the radius of the convection cell the SQL period-
icity cannot be exactly realized in the physical system. The
same problem arises in our numerical simulations with a
limited resolution on a finite square. It appears difficult to
predict from basic principles how our system will respond to
this inherent frustration. The unit cell is required to be con-
siderably smaller than the calculational domain. In fact,
SQLs observed in numerical simulations demonstrate a pro-
nounced tendency to select a wave-number ratio qS /qH that
satisfies Eq. �24� through a rational m /n with small n
=1,2 ,3 to an accuracy of better than 1%. On the other hand,
the exact representation, to within our numerical precision,
of qS /qH in Eq. �24� requires a rational m̄ / n̄, where m̄ / n̄
�m /n, potentially with a large n̄. The decomposition

p12 =
m

n
�q1

H + q2
H� + � m̄

n̄
−

m

n
��q1

H + q2
H� �25�

and an analogous one for p34 indicate that the actual SQC
pattern should be interpreted as a SQL constructed with a
small n �i.e., locally with a small periodicity cell�, that is
modulated on a large scale 2� / ���m̄ / n̄�− �m /n��qH�. The cor-
responding notion of modulated SQL is probably the appro-
priate characterization of physical superlattices in a finite do-
main, when some freedom is left to the system in selecting
the resonating wave vectors from a band, as in our case. This
definition is also appropriate for the experimental picture in
Fig. 4�a�, where the deviation from the rectangular tetrad can
be interpreted in analogy to Eq. �25� as a modulated super-
lattice.

To augment our experimental findings the numerical
analysis focuses on the robustness of complex-ordered pat-
terns. Typically our simulations use random initial conditions
on a nonadapted calculational grid. To some extent the sys-
tem has the freedom to choose optimal angles � to orient the
square backbone according to Eq. �19� as well as qH and qS.
As a first example, the SQL shown in Fig. 4�b� corresponds
to m /n=3/2, which yields qS /qH=2.915 according to Eq.
�24�. This value is practically identical to the ratio qS /qH

=2.912 that the system selects in simulations using random
initial conditions. The two basis vectors 2a1

H and 2a2
H �Eqs.

�20��, include angles of �25° and �115° with the x axis,
respectively. Inspection of Fig. 4�b� confirms that the lattice
constant is 2 times the lattice constant of the square back-
bone �n=2�. In the vicinity of bicritical points at other values
of � numerical superlattices realized different n values. The
pattern shown in Fig. 17�a� has qS /qH=2.236. According to
Eq. �24� this corresponds to m /n=1. With n=1 the lattice is
indeed spanned by the harmonic basis vectors ai

H constructed
according to Eqs. �19� and �20� with �=12.5°.

Figure 17�b� is a more complex SQL that is observed
when using random initial conditions. The square backbone
is spanned in Fourier space by the vectors

q1
H = qH�1,0� and q2

H = qH�0,1� . �26�

The most symmetric realization of a SQL, consistent with
the duplicate tetrad condition in Eqs. �15� and �16� and in
agreement with Fig. 17�d�, is achieved by the following defi-
nitions of the wave vectors qi

S �i=1, . . . ,6�:

q2
S =

m

n
�q1

H + q2
H�, q1,3

S = q2
S ± �q1

H − q2
H� , �27�

q5
S =

m

n
�q2

H − q1
H�, q4,6

S = q5
S ± �q1

H + q2
H� , �28�

where m /n is a rational number. The magnitudes of the vari-
ous wave numbers in Eqs. �27� and �28� satisfy

qi
S = �qH
2
1 + �m

n
�2� , i = 1,3,4,6,

qH
2�m

n
�2

, i = 2,5. � . �29�

In fact the simulation shown in Fig. 17�b� has practically
locked into this ideal double tetrad SQL with m=7 and n
=2. The deviation from the corresponding ratios q1

S /qH

=5.147 and q2
S /qH=4.95 according to Eq. �24� are less than

1%. It requires concentration on the small white dots be-
tween the stars in Fig. 17�b� to identify the primitive unit cell
that has n=2, four times larger than the square backbone
one.

In Figs. 18�a� and 18�b� a rhombic background pattern is
observed; it is spanned by the wave vectors

q1,2
H = qH

„cos���, ± sin���…, � � 30 ° . �30�

The corresponding basis vectors in real space are given by

a1,2
H =

2�

qH „±cos�90 − ��,sin�90 − ��… . �31�

If the subharmonic wave vectors q1
S and q2

S are constructed in
line with Eqs. �22�, the pattern is a rhombic superlattice
�RSL�. In analogy to Eq. �24� the following relation holds:

qS = qH

�1 +
m

n
�2

+ �m

n
�2

+
m

n
�m

n
+ 1�cos���� .

�32�

For qS /qH=2.08 we find m /n=0.687�2/3. In fact, on in-
spection of Fig. �18� periodicity with three �n=3� rhombic
lattice constants along ai �i=1,2� which enclose angles 60°
and 120° with the x axis, respectively can be observed.

Finally we address the stripe superlattice shown in Fig.
6�a�. In the spectral domain all of the stimulated peaks �Fig.
6�b�� may be spanned by two wave vectors qi �i=1,2�. Cor-
respondingly, there always exists position space basis vectors
ai �i=1,2� which fulfill the conditions qi ·a j =2��i,j �i , j
=1,2�. Such complex-ordered patterns are then always peri-
odic and thereby superlattices.
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In this section we have described �modulated� superlat-
tices on a geometrical basis. Whether they are physically
realized depends on the wave-number ratio qH /qS which is
roughly determined by the critical values at a bicritical point
q2c

H ,q2c
S . The wave-number ratio can be modified via the

modulation amplitude and frequency. In addition the system
will exploit the wave-number dependence of the cross coef-
ficients �see Sec. IV�, to optimize the tetrad resonance. This
might explain the observations of qH /qS�q2c

H /q2c
S made in

experiments and simulations. Such features are certainly not
easy to capture by simple models of coupled amplitude equa-
tions. Finally, the superlattice point group has not been dis-
cussed here, which would require additional considerations
of the phases of the amplitudes.

VII. CONCLUSIONS

In summary, we have reported an investigation of spa-
tially complex patterns composed of multiple scales that are
found in fluid motion driven by both a vertical thermal gra-
dient and time periodic vertical acceleration. To the best of
our knowledge, these patterns are novel and the first ex-
amples of complex order reported in a convection experi-
ment. All of these patterns are observed in a coexistence
parameter region and are thus composed of two distinct wave
numbers with modes at one q responding harmonically to the
oscillation frequency and modes at the other q responding
subharmonically to �. The complex order is shown to be
governed by certain resonant tetrad conditions.

With the exception of the immediate vicinity above the
bicritical point, experiments and simulations of the Bouss-
inesq equations were found to be in excellent agreement.
While in simulations SQC solutions seem to bifurcate di-
rectly at the bicritical point from the ground state, this is not
observed in the experiments. We find this disagreement is
due to the broken midplane reflection symmetry of the fluid
layer caused by relatively strong temperature variations of
the material parameters. This allows for an additional three-
mode resonance harmful in competition with the resonant
tetrads. In fact some simulations that accounted for weakly
broken inversion symmetry confirmed the experimental fea-
tures.

Fairly complicated patterns with intermittent dynamics
between harmonic and subharmonic patches have been iden-
tified in the experiments when changing systematically the
parameters, either from pure harmonic or pure subharmonic
states. The transition to such a coexistence as well as the
locking into extended SQCs could in general be identified in
the power spectra.

For the classification of the various types of quasiperiodic
patterns in this paper, which exist also when heating from
above, certain conditions for the arrangement of the har-
monic and subharmonic wave vectors have been presented to
study the possibility of periodic superlattice patterns. Con-
sidering the role of finite size effects we propose to under-
stand the quasiperiodic crystals in our experiment in terms of
modulated superlattices.

It is worth noting that modulation of convective flow can
be achieved by other ways than imposing time-dependent

acceleration; for example, several investigations have exam-
ined the related problem of modulated convection due to
time-periodic oscillation of �T about nonzero mean �36–43�.
In principle, such studies can also investigate interesting dy-
namics arising near harmonic and subharmonic bicritical
points. However, experimental realizations have been re-
stricted to slow temporal modulations due to time delays
between the drive and the system response. These prevent
imposing spatially uniform modulation at frequencies that
are sufficiently large to observe subharmonic convection or
to probe the competition between harmonic and subharmonic
modes.

Complex-ordered patterns have been observed in other
systems capable of forming macroscopic patterns. Previously
reported examples can be separated into two broad classes,
fluidlike and optical. With the exception of a ferrofluid case
�15� all of the previous fluidlike systems have been varia-
tions of the Faraday apparatus �44�. In these systems waves
on the free surface of a vertically vibrated fluid layer display
quasiperiodic crystals �10,11� and superlattices �12,14�. The
main difference between these systems and the present one is
that a resonant interaction of waves must satisfy relations
between both wave vectors ki and frequencies ��ki�, defined
by dispersion relations. In the majority of Faraday examples
the experiment is designed to break the subharmonic tempo-
ral symmetry to allow three-wave interactions. Edwards and
Fauve �10� first excluded this symmetry by including two
driving frequencies to produce a harmonic response; a
method used by a majority of subsequent investigators
�11–14�. Harmonic response has also been achieved when
using a single drive � by tuning � to match the intrinsic time
scale of a viscoelastic fluid �45�. In the absence of inversion
symmetry resonant triads are allowed and are found to be
the selection mechanism for complex-ordered patterns.

Qualitatively similar, complex-ordered patterns have been
observed in optical studies �16� involving a nonlinear me-
dium. Pattern symmetries in these studies are either exter-
nally imposed by rotation of the optical field in a nonlinear
cavity �16� or as a more natural result of the configuration
�8,17�. In most cases resonant triads found to produce com-
plex order are intentionally constructed. For completeness,
we also mention that quasipatterns are a possibility in
reaction-diffusion systems as a result of resonant triads
�46,47�.

Complex-ordered patterns produced by resonant tetrads
have previously been reported in the Faraday system. While
resonant triads are typically studied in these systems, the first
reported macroscopic quasiperiodic crystals were by Chris-
tiansen, Alstrøm, and Levinsen �48� using a Newtonian fluid
and a single forcing frequency. In this case the authors found
quasiperiodic crystals resulting from four-wave resonant in-
teractions near onset, consistent with the temporal symmetry
making the cubic amplitude equation term the lowest order
nonlinearity present. Recently, complex order resulting from
four-wave interactions in a Faraday experiment were again
reported �14�; in this case when using 2 frequency forcing.
However, recent studies have focused on resonant triads and
reporting complex-order due to resonant tetrads as an excep-
tion.

Four-wave interactions can be more significant to the dy-
namics of physical systems than three-wave interactions in
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other systems. Considering the problem of ocean wave gen-
eration Phillips �49,50� studied inviscid gravity waves in
deep water. In this case the wave is characterized by a two-
dimensional wave vector k and its frequency � determined
by the nonlinear dispersion relation �=��k�. The reported
results indicate that at least four modes are required for a
resonant coupling

k1 + k2 = k3 + k4,

�1 + �2 = �3 + �4, �i = ��ki� . �33�

Consequently four-wave resonances play the dominant role
in energy transfer between wave components, while the ef-
fects of three-wave interactions remain negligible. In this
case the resonant coupling of the mode amplitudes leads to
four coupled amplitude equations that are analogous to our
case in conceptual structure.

In this paper we have not systematically investigated the
stability of superlattices and their bifurcations. Our evidence
indicates the resonant tetrads shown in Figs. 15 and 4 have
bifurcated directly from the trivial state. There is some anal-
ogy to the case of superlattice-one �SLI� patterns in the Far-

aday case �11,51�. In contrast the superlattice-two �SlII� pat-
terns in Ref. �11� arise from a secondary spatial period-
multiplying bifurcation from hexagons �52�. This case bears
some analogy to the transition from stripe superlattices �Fig.
6� to square quasiperiodic crystals and square superlattices.
An interesting outstanding question is the choice of the sys-
tem to switch from simple superlattices �as in Fig. 6�a� with
n=1� with the periodicity of the underlying square lattice to
the case of a basis cell of double extension �see n=2, Fig.
4�b�� with varying ratio of qS /qH. It would also be interesting
to determine whether other superlattices described as tran-
sients in simple Rayleigh-Bénard convection in the nonlinear
regime �53,54� could be realized as stationary patterns.
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